
Always be Cross-compiling

Matthew Bauer, John Ericson

October 9, 2019

https://matthewbauer.us
https://github.com/Ericson2314


Always be cross compiling



Who needs cross-compilation?

I Used to create executables for a system different than we are
currently on

I While native compilation is usually easier and better
supported, we need cross-compilation for:

I embedded systems, no Nix

I windows, no Nix (yet)

I new operating systems

I architectures where we haven’t made bootstrap tools



History

I Nixpkgs has had cross-compilation support for a while.

I But, it was considered separate from native compilation,
requiring special crossAttrs args.

I Recent efforts make cross-compilation less exceptional,
allowing us to reuse native infrastructure. This reduces
duplication between package expressions.



What is a system string?

I Two ways to specify target systems exist. Both are supported
in Nixpkgs through crossSystem and localSystem
mechanisms.

I A system string is meant to specify some group of computers
by architecture, operating system, or ABI.



Nix system tuple (system)

I Format: <arch>-<os>

I Examples:

I x86_64-linux

I x86_64-darwin

I aarch64-linux

I i686-windows

I arm-none

I Nix internally doesn’t care about libc or vendor.



LLVM triple, also know as GNU config (config)

I Format: <arch>-<vendor>-<os>-<libc>

I Examples:

I x86_64-unknown-linux-gnu

I x86_64-apple-darwin

I aarch64-unknown-linux-musl

I i686-pc-mingw32

I arm-none-eabi

I Actually has up to 4 parts, making it a quadruple not a triple.
libc is optional on systems where there is only one standard
Libc.



History

I Original GNU config just had 3 parts. linux-gnu was used by
GNU people to emphasize GNU/Linux. The gnu part was
retconned later on to mean GNU Libc. We now have two
other Libcs that work on Linux: Bionic (linux-android) and
Musl (linux-musl).



Building a toolchain

I Nixpkgs needs to support many different use cases of
cross-compilation.

I By far the most complex is bootstrapping a toolchain. In this
case, we have 3 systems we need to identify.



Autoconf arguments

I We borrow naming from Autoconf for this:
I --build (stdenv.buildPlatform)

I The system on which the package is being configured and
compiled.

I --host (stdenv.hostPlatform)

I The system on which the package will run.

I --target (stdenv.targetPlatform)

I The system on which any compiler will produce code for.



How they work

I Most users only need to care about the first 2, but --target
is still needed to prevent adding a special case for building
toolchain compilation.

I Toolchain package like compilers and linkers usually need to
pay attention to all three. GCC and GNU Binutils need to
know where they are going to run as well as what they should
produce output for.

I Other toolchains like LLVM are target-independent and don’t
need to know where they will run. They just need to know
about --build and --target.



Compilation terminology

I --build == --host == --target

I Native compilation

I --build /= --host == --target

I Cross compilation

I --build /= --host /= --target

I Canadian cross compilation

I --build == --host /= --target

I ?



Cross toolchains

I Cross toolchains are provided in Nixpkgs as separate package
sets.

I These package sets will produce packages that will run on a
machine different than your own.



Cross toolchains examples

I Some examples are necessary.

I A C compiler for your native machine:

(import <nixpkgs> {
crossSystem = "aarch64-unknown-linux-musl";

}).buildPackages.buildPackages.gcc

I A C compiler for 64-bit ARM:

(import <nixpkgs> {
crossSystem = "aarch64-unknown-linux-musl";

}).buildPackages.gcc

I A C compiler that runs on 64-bit ARM:

(import <nixpkgs> {
crossSystem = "aarch64-unknown-linux-musl";

}).gcc



Overview

I Specifying dependencies is an important part of Nix. Thinking
about dependencies adds a second dimension to the system
matrix above.

I Each dependency will be built on one system for another
system.

I From each we get a tuple that can be used correctly.



List of dependency types

I (--build, --build) - depsBuildBuild

I (--build, --host) - nativeBuildInputs

I (--build, --target) - depsBuildTarget

I (--host, --host) - depsHostHost

I (--host, --target) - buildInputs

I (--target, --target) - depsTargetTarget



Diagram



Problem

I By default, Nixpkgs disables static libraries when configuring.
We prefer shared libraries to reduce closure sizes and force
linking between packages.

I You’ve been able to override this behavior for a while by
setting dontDisableStatic. This could be added to an
overlay so that everything in the package set builds statically.

I But, doing this is not easy because it requires a mass rebuild
of everything, buildtime and runtime.



Solution

I We don’t really need to rebuild all of this stuff, it’s just
overlays applies things to our entire toolchain and everything
that depends on it.

I Static compilation can be treated as just a special case of
cross-compilation. We may not actually be targeting another
system, but just building for our own system.



crossOverlays

I crossOverlays applies an overlay to just the last package set
in cross compilation. This means the amount of things we
have to rebuild is limited to just runtime dependencies of
static packages.

I This mechanism is used in pkgsStatic to build arbitrary
packages statically.



Cross-compilation in bootstrapping

I Bootstrapping can also benefit from thinking in
cross-compilation.

I TBD

I . . .



strictDeps

I strictDeps is used only when cross-compiling to tell the
Nixpkgs setup script to only include things in the PATH which
can actually be executed on the build machine.

I It is one of the last remaining special cases left to remove.



Issues with strictDeps

I The main issue with strictDeps is it makes a significant
chance to how buildInputs and nativeBuildInputs works.

I Some compromise might be possible. We could make
buildInputs imply depsBuildHost in addition to
depsHostTarget.



superStrictDeps

I There are more things we can do to enforce that our
dependencies are being used as expected.

I Nix provides special variables to “allow” and “disallow” things.

I disallowedReferences / allowedReferences - specify
what is or isn’t allowed directly in a packages’ output.

I disallowedRequisites / allowedRequisites - specify
what is or isn’t allowed in the entire packages’ closure.



superStrictDeps: Proposal

I We can use disallowedReferences to disallow
nativeBuildInputs in the package output in the same way
that we disallow buildInputs from being executed. This
prevents nativeBuildInputs from being used after a
package is built.

I Proposal:

disallowedReferences =
depsBuildBuild ++ nativeBuildInputs ++ depsBuildTarget

-- (depsHostHost ++ buildInputs ++ depsTargetTarget);



Other improvements

I Other improvements in cross-compilation infrastructure are
necessary.

I Some examples of other open work:

I Do propagation in Nix, instead of Bash.

I Correctly splice package overrides. (#49526)

I Also, need to allow things outside of Nixpkgs to take
advantage of splicing.

I Is there an alternative to splicing?

I Always prefix compilers. (#21471)

I Always set --build, --host, and --target. (#21471)



About

I Authors: Matthew Bauer
<matthew.bauer@obsidian.systems>, John Ericson
<john.ericson@obsidian.systems>

I Employer: Obsidian Systems LLC <info@obsidian.systems>

I Available for Nix and Haskell consulting

https://matthewbauer.us
mailto:matthew.bauer@obsidian.systems
https://github.com/Ericson2314
mailto:john.ericson@obsidian.systems
https://obsidian.systems
mailto:info@obsidian.systems


Source code and other versions

I Slide source is available at https://matthewbauer.us/
slides/always-be-cross-compiling.org

I HTML version is available at https://matthewbauer.us/
slides/always-be-cross-compiling.html

I PDF/Beamer version is available at https://matthewbauer.
us/slides/always-be-cross-compiling.pdf

https://matthewbauer.us/slides/always-be-cross-compiling.org
https://matthewbauer.us/slides/always-be-cross-compiling.org
https://matthewbauer.us/slides/always-be-cross-compiling.html
https://matthewbauer.us/slides/always-be-cross-compiling.html
https://matthewbauer.us/slides/always-be-cross-compiling.pdf
https://matthewbauer.us/slides/always-be-cross-compiling.pdf


Further reading

I Adapted from http://matthewbauer.us/blog/
beginners-guide-to-cross.html

http://matthewbauer.us/blog/beginners-guide-to-cross.html
http://matthewbauer.us/blog/beginners-guide-to-cross.html

	Overview
	Specifying systems
	Toolchains
	Specifying dependencies
	Case study 1: Static compilation
	Case study 2: Bootstrapping
	strictDeps and the future
	Conclusion

